Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Methods Mol Biol ; 2203: 187-204, 2020.
Article in English | MEDLINE | ID: covidwho-729907

ABSTRACT

Biotin-based proximity labeling circumvents major pitfalls of classical biochemical approaches to identify protein-protein interactions. It consists of enzyme-catalyzed biotin tags ubiquitously apposed on proteins located in close proximity of the labeling enzyme, followed by affinity purification and identification of biotinylated proteins by mass spectrometry. Here we outline the methods by which the molecular microenvironment of the coronavirus replicase/transcriptase complex (RTC), i.e., proteins located within a close perimeter of the RTC, can be determined by different proximity labeling approaches using BirAR118G (BioID), TurboID, and APEX2. These factors represent a molecular signature of coronavirus RTCs and likely contribute to the viral life cycle, thereby constituting attractive targets for the development of antiviral intervention strategies.


Subject(s)
Coronavirus/pathogenicity , Enzymes/genetics , Host-Pathogen Interactions/physiology , Proteomics/methods , Viral Proteins/metabolism , Animals , Ascorbate Peroxidases/genetics , Biotinylation , Carbon-Nitrogen Ligases/genetics , Cell Line , Coronavirus/genetics , Enzymes/metabolism , Escherichia coli Proteins/genetics , Fluorescent Antibody Technique , Microorganisms, Genetically-Modified , Repressor Proteins/genetics , Viral Proteins/chemistry , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL